Normal forms and linearization of resonant vector fields with multiple eigenvalues

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

construction of vector fields with positive lyapunov exponents

in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...

15 صفحه اول

Correction and linearization of resonant vector fields and diffeomorphisms

We extend the classical Siegel-Brjuno-Rüssmann linearization theorem to the resonant case by showing that under A. D. Brjuno’s diophantine condition, any resonant local analytic vector field (resp. diffeomorphism) possesses a well-defined correction which (1) depends on the chart but, in any given chart, is unique (2) consists solely of resonant terms and (3) has the property that, when substra...

متن کامل

Normal Forms of Vector Fields on Poisson Manifolds

We study formal and analytic normal forms of radial and Hamiltonian vector fields on Poisson manifolds near a singular point.

متن کامل

Robust normal forms for saddles of analytic vector fields

The aim of this paper is to introduce a technique for describing trajectories of systems of ordinary differential equations (ODEs) passing near saddle-fixed points. In contrast to classical linearization techniques, the methods of this paper allow for perturbations of the underlying vector fields. This robustness is vital when modelling systems containing small uncertainties, and in the develop...

متن کامل

Differential Systems with Fuchsian Linear Part: Correction and Linearization, Normal Forms and Multiple Orthogonal Polynomials

Differential systems with a Fuchsian linear part are studied in regions including all the singularities in the complex plane of these equations. Such systems are not necessarily analytically equivalent to their linear part (they are not linearizable) and obstructions are found as a unique nonlinear correction after which the system becomes formally linearizable. More generally, normal forms are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2005

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2004.06.065